Must Read: Extensive Article on Mercury Toxicity.

Mercury: The Quintessential Antinutrient

Health authorities are unlikely to provide useful guidance on mercury risks, for several reasons. First, mercury is both technically and politically difficult to study; thus, scientific conclusions about some risks remain couched in uncertainty. Second, mercury’s effects are non-specific and multifactorial. Finally, much exposure is iatrogenic—caused by health care providers or institutions—making it an unpopular topic. Thus, the public may receive mixed messages from health authorities and agencies about the risks of routine mercury exposures, depending on whether the exposure involves dentistry, seafood consumption or vaccines.
For most people, the major sources of mercury exposure (Table 1) are elemental mercury vapor from dental amalgams and methylmercury (an organic mercury compound) from dietary fish. Ethylmercury (another organic mercury compound) in certain thimerosal-containing vaccines provides smaller amounts, but these can be highly toxic during the vulnerable windows of gestation and early childhood.
All three forms of mercury are easily absorbed and readily distributed throughout the body. Being lipophilic (having an affinity for lipids), they leave the bloodstream quickly, passing through biological membranes and concentrating in cells, including brain cells.7 Mercury is especially drawn to high-sulfur organelles (specialized cell structures) such as mitochondria. Once inside a cell, mercury (chemical symbol Hg) is soon oxidized to Hg2+, which, as a hydrophilic (water-loving) and lipophobic form of mercury, cannot easily pass through biological membranes. This form of mercury thus becomes trapped inside the cells and causes ongoing damage.7Mercury has a particular affinity for the brain, where it may be retained indefinitely.7,8 It also accumulates in epithelial tissues, organs and glands, such as the salivary glands, thyroid, liver, pancreas, testicles, prostate, sweat glands and kidneys, and the epithelium of the intestinal tract and skin.7
According to the Environmental Protection Agency (EPA), 2-7 percent of women of childbearing age in the U.S. have blood mercury levels of concern.9 There is reason to believe that regulatory levels of concern are too lax. A 2012 study showed blunted cortisol response and higher inflammatory markers at blood mercury levels well below the EPA’s established level for potential health risks (5.8 micrograms per liter).10 In addition, four neurodevelopmental disorders (attention-deficit/hyperactivity disorder, autism, seizures and stutter) affect almost 11 percent of all U.S. births, up 30 percent over the past decade.11 Subclinical decrements in brain function are even more common, affecting up to 15 percent of births.12
Mercury’s toxicity may be amplified by exposure to other toxic metals, including lead, cadmium and aluminum. Mercury and lead, in particular, are highly synergistic. In fact, in one study, a dose of mercury sufficient to kill 1 percent of lab rats (lethal dose “LD01”), when combined with a dose of lead sufficient to kill 1 percent, killed 100 percent of the rats.13 A similar test involving mercury and aluminum in cultured neurons killed 60 percent of the cells when the two low-dose toxicants (LD01) were combined.14 Even antibiotics have been shown to enhance the uptake, retention and toxicity of mercury.14 Additionally, testosterone appears to aggravate mercury toxicity during development, while estrogen protects against it.15 This may explain why more boys than girls are diagnosed with autism spectrum disorders and attention deficit disorders.

For full article please visit: