New-Age Vaccine Adjuvants: Friend or Foe?
New-Age Vaccine Adjuvants: Friend or Foe?
A major unsolved challenge in adjuvant
development is how to achieve a potent adjuvant effect while avoiding
reactogenicity or toxicity
|
ABSTRACT
Older vaccines made from live or killed whole
organisms were effective, but suffered from high reactogenicity. As vaccine
manufacturers developed safer, less reactogenic subunit vaccines, they found
that with lower reactogenicity came reduced vaccine effectiveness. Somewhat
ironically, the solution proposed to boost immunogenicity in modern vaccines is
to add back immune-activating substances such as toll-like receptor
agonists—the very same contaminants removed from old-style vaccines. This
raises the question of whether the vaccine field is moving forward or backward.
We propose that by avoiding adjuvants that work through toll-like receptor
(TLR) pathways, and instead focusing on adjuvants stimulating B- and T-cell
immunity directly, one can minimize inflammatory cytokine production and
consequent reactogenicity. We present data on a polysaccharide-based adjuvant candidate,
Advax, that enhances immunogenicity without reactogenicity, suggesting that
potent and well-tolerated vaccines for both adult and pediatric use are indeed
possible.
|
A major bottleneck in vaccine development is the lack of suitable
adjuvants for adult and pediatric prophylactic vaccine use. Aluminum salts were
introduced for human use in the 1930s when the regulatory environment was less
stringent. The desire for new and improved adjuvants stems not only from the
need to make existing inactivated vaccines more potent, but also to gain
features such as antigen-sparing ability, more rapid seroprotection, stimulation
of T-cell immunity, and longer-lasting protective immunity. Significant
regulatory and other hurdles exist for developing new adjuvants, as evidenced
by the complete absence of new FDA-approved adjuvants.
Safety and tolerability are critical regulatory
issues confronting new adjuvants, and pose the greatest barrier to new adjuvant
approvals. In addition to preclinical studies on the adjuvant itself, the
combined antigen–adjuvant formulation must pass animal toxicology screens in at
least two species at a dose and frequency similar to, or higher than, the
proposed human dose, and using the same route of administration, to assess
safety and tolerability before clinical tests can begin. Therefore, the
benefits of incorporating any adjuvant into vaccines must be balanced against
any increased reactogenicity or risk of adverse reactions. Unfortunately, in
most cases, increased adjuvant potency is associated with increased
reactogenicity and toxicity. The best example of this is complete Freund's
adjuvant (CFA). While it remains the gold standard in terms of adjuvant
potency, its extreme reactogenicity and toxicity precludes its use in human
vaccines, and there have been discussions of banning CFA even in veterinary
vaccines.
Vaccine-caused adverse effects can be separated
into two types: local and systemic reactions. Local reactions range from
injection site pain, inflammation, and swelling, to granulomas, sterile abscess
formation, lymphadenopathy, and ulceration. Systemic vaccine reactions may
include nausea, fever, adjuvant arthritis, uveitis, eosinophilia, allergic
reactions, organ-specific toxicity, anaphylaxis, or immunotoxicity mediated by
liberation of cytokines, immunosuppression, and induction of autoimmune
diseases.1,2 While some systemic reactions such as allergy and
anaphylaxis are clearly due to the antigen, others, such as adjuvant arthritis,
may be caused directly by or exacerbated by the adjuvant. It can be difficult
to identify which adverse reactions are mediated by the antigen, which by the
adjuvant, and which by both.
A major unsolved challenge in adjuvant development is how to
achieve a potent adjuvant effect while avoiding reactogenicity or toxicity.3 Most
newer human adjuvants including MF59,4 ISCOMS,5QS21,6 AS02,7 and
AS048 have substantially higher local reactogenicity and
systemic toxicity than alum. Even alum, despite being FDA-approved, has
significant adverse effects including injection site pain, inflammation, and
lymphadenopathy, and less commonly injection-site necrosis, granulomas, or
sterile abscess.9 Although many adjuvant-caused vaccine
reactions are not life-threatening and do resolve over time, they remain one of
the most important barriers to better community acceptance of routine
prophylactic vaccination. This particularly applies to pediatric vaccination
where prolonged distress in the child due to increased reactogenicity may lead
directly to parental and community resistance to vaccination.10 Hence,
particularly in the context of childhood prophylactic vaccines, it is critical
that suitable adjuvants be developed with lower reactogenicity and greater
safety. Ideally, in addition to being safe and well tolerated, adjuvants should
promote an appropriate (humoral and/or cellular) immune response, have a long
shelf-life, and should be stable, biodegradable, cheap to produce, and not
induce immune responses against themselves.11 A brief
description and history of potential human adjuvants follows (Table 1).
Aluminum Salts (Alum)
Mechanism of action. While the exact
mechanism of action of aluminum adjuvants remains uncertain, proposed
mechanisms include formation of a local antigen depot, efficient uptake of
aluminum-adsorbed antigen particles by antigen-presenting cells due their
particulate nature and optimal size, stimulation of immune-competent cells of
the body through activation of complement, induction of eosinophilia, and activation
of macrophages.12 Yet, none of these theories fail to
adequately explain aluminum's adjuvant ability.
We propose an alternative unifying theory of
aluminum action based on its toxicity. In our model, aluminum particles
together with absorbed antigen are phagocytosed by tissue macrophages, which
then become activated and mobilize into the lymph. Aluminum, once ingested, is
toxic to cells13 and by the time they reach the draining lymph
node most of the macrophages that have ingested aluminum particles will be dead
or dying. Once necrotic, the macrophages release their cytoplasmic contents,
including alum-absorbed antigen and inflammatory mediators such as IL-1 and
TNF, into the lymph. This provides a source of macrophage cell debris, antigen,
and co-stimulatory cytokines flowing into the draining lymph node, a potent mix
to stimulate antigen-specific plasma cells and antibody production.
Interestingly, a similar mechanism was proposed many years ago to explain the
adjuvant action of beryllium, a compound which is even more toxic to
macrophages than aluminum, and has potent adjuvant activity.14
Limitations of alum. Although aluminum salts
remain the most commonly used adjuvants and the only ones currently approved
for use in humans by the FDA, they suffer from a number of downsides, including
inability to induce cytotoxic T-lymphocyte (CTL) responses critical in many
cases for viral protection and clearance.15 Well-recognized
problems of aluminum adjuvants include local injection site reactions,
stimulation of eosinophilia, augmentation of IgE antibody responses,
ineffectiveness for some antigens, and failure to enhance CTL responses. Alum
is reasonably well tolerated when injected intramuscularly, with only mild to
moderate injection pain and occasional granulomas. Risk of granulomas becomes
particularly high when alum-based vaccines are injected subcutaneously or
intradermally. Consequently, alum-containing vaccines are generally given by
intramuscular injection.16,17
The mechanism for alum's tendency to stimulate
eosinophilia and enhance IgE production is unknown, but its consequence is an
increased risk of vaccine allergy and anaphylaxis.9,16,18,19 This
potential has been demonstrated in animal models of ovalbumin-induced asthma or
anaphlylaxis, which are dependent on alum in the initial priming. In humans,
there have been reports of a chronic inflammation syndrome called macrophagic
myofascitis (MMF) being induced by alum-based vaccines.20 The
original description of the syndrome was based on a group of patients with
presumptive diagnoses of myopathy mimicking polymyositis. Symptoms included
myalgias, arthralgias, marked asthenia, muscle weakness, and fever. Abnormal
laboratory findings included elevated CK levels, increased ESR, and myopathic
EMG, with muscle biopsies showing infiltration by sheets of macrophages with
granular periodic-acid-Schiff positive content. The syndrome is due to the
persistence of vaccine-derived aluminum at vaccine injection sites in the
muscle, causing a chronic inflammatory reaction.21 Since its
original description in 1993,22 more than 200 cases of MMF have
been described in multiple countries.23 Neurological
manifestations resembling multiple sclerosis have been reported in some
patients.24 Children with MMF present with hypotonia and motor
or psychomotor delay. A conclusive diagnosis is made by showing an aluminum
peak in the lesion by energy-dispersive X-ray microanalysis. When Cynomolgus
monkeys were immunized in the quadriceps muscle with diphtheria–tetanus
vaccine, histopathological lesions similar to MMF in humans were observed up to
three and 12 months after aluminum phosphate and aluminum-hydroxide-adjuvanted
vaccine administration, respectively.25 Aluminum is widely used
as an adjuvant in human vaccines, and children can receive up to 3.75 mg of
parenteral aluminum during the first six months of life. Intraperitoneal
injection of aluminum-adsorbed vaccines in mice causes a transient rise in
brain tissue aluminum levels peaking around day. 2–3 It is
likely that aluminum is transported to the brain by the iron-binding protein
transferrin and enters the brain via specific transferrin receptors.26 Of
major concern is the finding in cats of feline fibrosarcomas at the site of
aluminum-adjuvanted vaccination. The tumors are sometimes surrounded by
lymphocytes and macrophages that have taken up aluminum (with lesions identical
to MMF), leading to the hypothesis that persistent inflammatory and
immunological reactions associated with aluminum derange fibrous connective
tissue repair responses, leading to neoplasia.27
Oil-in-Water Emulsions
General mechanism of action. Oil-in-water emulsions
include Montanide, Adjuvant 65, and Lipovant.28 (MF59, also an
oil-in-water emulsion, is discussed separately below.) Oil-in-water particles
are irritants and cause local inflammation, inducing a chemotactic signal that
elicits local macrophage invasion. The oil particles, along with associated
antigen, are rapidly ingested by macrophages, which traffic to the draining
lymph node. Because of frequent adverse reactions, the major human use of
oil-in-water emulsions has been in therapeutic cancer and HIV vaccines29although
Adjuvant 65 was previously used in a prophylactic influenza vaccine. Montanide
adjuvants are variously formulated as water in oil, oil-in-water, or water in
oil-in-water emulsions.30,31 The water-in-mineral-oil adjuvant
Drakeol/ISA-51 has been used in HIV-infected individuals.32 Water-in-squalene
emulsion (ISA-720) has been evaluated in a malaria vaccine trial.31 Although
potent, such adjuvants induced severe local reactions in some recipients.33,34 Emulsions
have also been used as delivery systems for immunostimulatory adjuvants,
including MPL and QS21. An oil-in-water emulsion containing MPL and QS21
(SBAS-2) induced protection in a mouse model of malaria equivalent to that seen
with CFA35 and was subsequently shown to confer short-lived protection in a
malaria challenge in human volunteers, though with a high reactogenicity
profile.36 In trials with a HIV vaccine, SBAS-2 induced high antibody
titers and proliferative but not CTL responses.37
Limitations of oil-in-water emulsions. Use of oil-in-water
emulsions has been limited by their reactogenicity and potential for adverse
reactions. Various types of emulsions have been used, with different natural
oils, in order to try to find more stable, potent, less reactogenic
formulations.38However, they still suffer from excessive
reactogenicity and toxicity which restricts their suitability for prophylactic
vaccines, particularly those intended for children.
MF59
Mechanism of action. Originally, Syntex
adjuvant (containing squalene oil, a non-ionic surfactant, poloxamer L121, and
threonyl muramyl dipeptide) was developed as a replacement for CFA.39However,
this adjuvant proved too toxic for human use40 and Chiron
subsequently developed MF59 adjuvant as an alternative.41 MF59
is a submicron oil-in-water emulsion which contains 4–5% w/v squalene, 0.5% w/v
Tween 80, 0.5% Span 85, and optionally, varying amounts of muramyl tripeptide
phosphatidyl-ethanolamine (MTP-PE), which activates non-TLR sensing receptors
known as NOD-LRRs (reviewed in Akira42 ). Because of excessive
reactogenicity and/or toxicity, the current version of MF59 used in an
adjuvanted influenza vaccine (FLUAD) registered in Italy does not contain MTP
but instead just squalene oil and surfactants.43,44 Published
data suggests addition of MF59 only induces a modest (about 25%) increase in
antibody levels in the elderly and no difference in younger individuals when
compared to unadjuvanted influenza vaccine.4,45 Furthermore,
there was little evidence that MF59 is antigen-sparing for influenza vaccines,
since the same antigen dose is required for MF59 as for the unadjuvanted
vaccine.4,45 MF59 has been shown to be superior to alum in
inducing antibody responses to hepatitis B vaccine in baboons46 and
humans.47
Limitations of MF59. On the negative side,
MF59, like all other oil-in-water adjuvants, is associated with major increases
in injection site pain and reactogenicity.4 Another concern with
squalene oil is its ability to induce chronic inflammatory arthritis in
susceptible animal models.48 Susceptibility to squalene
arthritis is genetically determined, raising the risk that adjuvants based on
squalene oil may also induce or exacerbate inflammatory arthritis in
genetically susceptible humans.48
Monophosphoryl Lipid A (MPL)
Mechanism of action. Bacteria-derived
immunostimulants constitute a major potential source of adjuvants.
Lipopolysaccharide (LPS),49 containing the active Lipid A
moiety, is very potent but too toxic for human use. MPL is a chemically
detoxified derivative of native Lipid A from Salmonella minnesota R595,
which is used in complex adjuvant formulations with alum, QS21, liposomes, and
emulsions, and is a component of GlaxoSmithKline's proprietary AS02 and AS04
adjuvants.7,8,50Like LPS, MPL interacts with TLR4 on macrophages,
resulting in the release of proinflammatory cytokines including TNF, IL-2 and
IFN-gamma, which promote the generation of Th1 responses.51,52MPL
has been extensively evaluated in human subjects for applications including
vaccines for cancer and infectious disease (genital herpes, HBV, malaria, and
HPV), and allergies. Approved vaccines containing MPL include a melanoma
vaccine approved in Canada, a hepatitis B vaccine for hemodialysis patients
approved in Europe, and an HPV vaccine approved in Australia.
Limitations of MPL. Although MPL lacks some
of the more extreme toxicities of LPS, it is nevertheless able to strongly
activate via TLR-4, inducing pro-inflammatory cytokines, and thereby
significant reactogenicity. In terms of production, like any
bacterially-derived material, there are issues of consistency of preparation,
formulation, and cost.
CpG
Mechanism of action. The immunostimulatory
effect of bacterial DNA is due to the presence of unmethylated CpG
dinucleotides which are both rare and methylated in vertebrate DNA.53–55 CpG's
effect is mediated by endocytic TLR9 receptors56 expressed on B
cells and plasmacytoid dendritic cells in humans, triggering the release of
inflammatory cytokines57 and biasing responses towards Th1
immunity and induction of CTL.58 CPG 7909, developed by Coley
Pharmaceuticals, has been tested in conjunction with an alum-adjuvanted
Hepatitis B vaccine. This vaccine resulted in faster achievement of protective
antibody levels and higher overall titer. There was an indication of enhanced
CD8 CTL responses, but only in higher CpG dose groups.59 In
Phase 2 cancer trials using a CpG adjuvanted Melan-A vaccine in melanoma
patients, there was evidence of induction of CD8 CTL's specific for Melan-A
expressed by tumor cells, but little effect on outcome.60
Limitations of CpG. In human trials of CpG
adjuvants, adverse events included injection site reactions, flu-like symptoms,
and headache, and were all more frequent in CpG versus alum adjuvanted groups.59 This
is due to TLR9 activating NK-kB, a major inducer of inflammatory cytokines such
as TNF-alpha, which are largely responsible for reactogenicity of adjuvants
using TLR pathways.61–63 Overall, reactogenicity, toxicity, and
safety remain a barrier to acceptance of CpG adjuvants for human prophylactic
vaccines. Additionally, TLR9 signalling has shown to play a critical role in
experimental allergic encephalitis (EAE), a model of human multiple sclerosis,64 and
can even break tolerance and trigger EAE in otherwise healthy animals,65 raising
concern that CpG adjuvants could induce or exacerbate multiple sclerosis or
other autoimmune diseases in susceptible individuals. Activation by CpG-DNA also
has been shown to trigger and exacerbate systemic lupus erythematosus (SLE),
with TLR9 activation in genetically prone mice triggering lupus nephritis.66CpG-DNA
triggers lupus nephritis due to its potent immunostimulatory effects at
multiple levels, including B-cell IL12p40 production, B-cell proliferation,
double-stranded DNA autoantibody secretion, and dendritic cell IFN-alpha
production.67
QS21
Mechanism of action. QS21 is derived from
Quil A, itself a collection of triterpenoid glycosides (saponins) derived from
the bark of the South American soap bark tree, Quillaja saponaria. QS21
induces Th1 cytokines and antibodies of the IgG2a isotype in mice, consistent
with a Th1 bias.68–70Saponins integrate into cell membranes through
interaction with cholesterol, resulting in pores71through which
antigens enter. Subsequently, peptides from these antigens may be processed and
presented via MHC class I, stimulating a CD8 CTL response. Numerous clinical
trials have been conducted using QS21 in cancer vaccines and infectious
disease, including HIV-1, influenza, herpes, malaria, and hepatitis B.72 The
saponins have also been used in adjuvant formulations such as immunostimulatory
complexes (ISCOMs) which will be discussed separately.
Limitations of QS21. Severe injection site
pain is a major limiting factor in QS21 use. In addition to pain on injection
and granulomas, toxicity of QS21 includes severe hemolysis,3,6,69,73,74 making
such adjuvants unsuitable for human prophylactic uses. This was highlighted in
a recent trial of a QS21 adjuvanted influenza vaccine in healthy young adults
where vaccination site pain and postvaccination myalgias were far greater in
the QS21 group, and the QS21-containing vaccine had no advantage in terms of
antibody response compared with the unadjuvanted vaccine.75 In
a trial of QS21 in a cancer vaccine, virtually all of the patients experienced
inflammation and/or pruritis at the site of injection attributed to the QS21
adjuvant.76 Other common side effects were fever (71%), fatigue
(44%), flu-like symptoms (58%), chills (29%), myalgias (48%), and headache
(66%). These toxicities were thought by the investigators to be all due to
QS21, given there was no correlation between vaccine dose and toxicity.77
In a trial of a malaria vaccine using QS21, two
of 89 individuals developed severe vaccine allergy, a high complication rate
for a prophylactic vaccine.78 Further issues of QS21 safety
have also surfaced with deaths of human subjects in an Alzheimer's disease
vaccine trial using QS21, although the contribution of QS21 to these
encephalitis deaths is not clear.79
ISCOMs
Mechanism of action. ISCOMs are
immunostimulating complexes containing a saponin, a sterol, and, optionally, a
phospholipid. The preferred saponins are Quil A or QS21, the preferred sterol
cholesterol, and the phospholipid is generally phosphatidylethanolamine. ISCOMs
have been shown to help generate protective immunity in a variety of
experimental models, and generate CTL responses to such antigens as HIV
envelope glycoprotein and influenza hemagglutinin.80,81 The
principal advantage of ISCOMs is to reduce the dose of the highly toxic QS21
adjuvant component (the saponin component is bound to cholesterol and is less
free to interact with cell membranes, thereby reducing QS21 hemolytic
activity.)82,83 ISCOMs, being particles, are also more likely
to be phagocytosed directly by macrophages. The adjuvant activity of ISCOMs is
related to their ability to induce cytokines, including IFN-g and IL-12,5,84 consistent
with an ability to skew immune responses in a Th1 direction.
Limitations of ISCOMs. ISCOMs have suffered
from issues including cost, manufacturing difficulty, and stability, in
addition to reactogenicity, toxicity, and safety concerns.6,85 Side
effects in a Phase 1 human cancer trial included flu-like symptoms, fever, and
malaise.86 A major part of ISCOM reactogenicity and toxicity
reflects the inclusion of Quil A or QS21 as an active ingredient. Hence all
safety concerns about QS21 apply to ISCOMs.
Liposomes
Mechanism of action. Liposomes are synthetic
phospholipid spheres consisting of lipid layers that can encapsulate antigens
and act as both vaccine delivery vehicle and adjuvant.87 The
adjuvanticity of liposomes depends on the number of lipid layers,88 electric
charge,89 composition,90 and method of
preparation.90-92 Their use enhances both humoral and
cell-mediated immunity to protein and polysaccharide antigens.89,91 Liposome-based
vaccines based on virosomes are approved in Europe for hepatitis A and
influenza.93 They have been shown to better induce CTL to
influenza in elderly humans compared to unadjuvanted vaccine.94 INFLUSOME-VAC,
which contains IL2-supplemented trivalent liposomal influenza vaccine, showed
enhanced immunogenicity when compared with standard split-virion vaccine in
elderly and young subjects, but at the expense of an overwhelming (83%)
incidence of pain at the injection site.95 The mechanism of
liposomes is fusion with the cell membranes of macrophages, enabling delivery
of proteins into the cytoplasm where they can enter the MHC class I pathway and
activate CD8 CTLs.96,97 Liposomes can be made with various
charge properties and cationic lipid vesicles comprising cationic cholesterol
derivatives, and optionally neutral phospholipids98 are able to
bind antigen on the surface and thereby enhance antigen presentation. Modified
proteo-liposomal structures termed cochleates have also shown utility as
systemic adjuvants.99
Limitations of liposomes . Liposomes have
suffered from manufacturing difficulties, stability, and high cost, which have
limited their use. Furthermore, they are more antigen vehicles than true
adjuvants and hence require addition of immunostimulatory components such as
MPL for potent adjuvant action. Injection site pain can be a major limitation
in some liposome vaccines.
Advax
Mechanism of action. Nanocrystalline
particles of inulin, a natural plant-derived polysaccharide consisting of a
linear chain of fructose molecules capped by a single glucose, are the active
constituent of Advax. A relatively hydrophobic backbone structure gives inulin
unique physicochemical properties: it can be crystallized into a number of
different isoforms.100 Specific isoforms of inulin have the
unique ability to enhance antigen-specific humoral and cellular immune responses
without reactogenicity.101–103 Another advantage of Advax is
that inulin can be prepared in exceptionally pure form, free of endotoxin or
other contaminants, is heat stable with an extremely long shelf-life, and has
had no safety issues over many decades of human use in intravenous injections
for renal function testing (British Pharmacopoeia). Inulin is not
metabolized in humans but is excreted unchanged in the urine as fructose and a
small quantity of glucose. Advax's excellent safety and tolerability make it
well suited to inclusion in childhood as well as adult vaccines.
Limitations of Advax. Currently, one of the
main obstacles facing Advax is the presumption within the vaccine community
that adjuvant potency is proportionate to inflammation and reactogenicity.104–110 This
dogma has arisen from uncritical acceptance of the "danger"
hypothesis, which suggests that immunogenicity is linked to activation of the
innate immune system. Advax gives good humoral and cell mediated immune
responses in the absence of inflammation100–103,111–114or
reactogenicity, thereby refuting the idea that "danger" signals are
essential to eliciting potent adaptive immune responses.
Summary
This paper highlights that the major differences
between current adjuvants is not their efficacy, but their reactogenicity and
safety. Increased reactogenicity reflects either an adjuvant's intrinsic tissue
irritant effect, e.g., for MF59 and other oil emulsions or QS21, or its ability
to induce inflammatory cytokines, e.g., LPS or MPL (through TLR activation).
While alum has a modest tissue irritant effect, it does not directly induce
inflammatory cytokine production, thereby explaining its lower reactogenicity.
Advax polysaccharide adjuvant has no local
tissue irritant effects and does not induce cytokine production in
vitro, explaining its almost complete lack of reactogenicity, which is
unique among the known adjuvants. Adjuvant potency must be balanced against
potential to do harm. Microbial cell components and TLR agonists including MDP,
LPS, trehalosedimycolate, and beta glucan, and also oils such as pristane and
squalene, are potent inducers of inflammatory arthritis in arthritis-prone
animal strains. Since rheumatoid arthritis affects 1% of the population, there
is significant risk of exacerbating or inducing such autoimmune syndromes in
humans. Similarly, TLR agonists such as CpG have been shown to induce and
exacerbate EAE and lupus. The ability of TLR agonists to break immune
tolerance, potentially leading to autoimmunity in susceptible individuals, may
preclude their inclusion in prophylactic vaccines, particularly for children.
Similarly, the severe reactogenicity of
compounds such as QS21 and oil emulsions preclude their inclusion in
prophylactic vaccines. They may have restricted use in applications such as
vaccine treatment of life-threatening conditions such as cancer and HIV.
Although alum is the current gold standard and has a favorable reactogenicity
profile compared to other adjuvants, major long-term safety issues continue to
cloud its future, with concerns including MMF and vaccine allergy.
Liposome technology is highly promising and
appears to offer significant advantages, providing reactogenicity is not
excessive and sufficient immunogenicity is obtained. Currently, Advax is the
only adjuvant that is non-reactogenic and without safety concerns in
pre-clinical and clinical trials. This profile makes it ideal for inclusion in
prophylactic vaccines, including those intended for use in children where
maximum safety and tolerability are paramount.
This article demonstrates the relative
under-development of the science of adjuvants, compared with the rapidly
advancing knowledge of vaccine antigens. It is extraordinary that the exact
mechanism of action remains unknown for many adjuvants, including alum, the
oldest known vaccine adjuvant. Given the increasing importance of adjuvants to
modern vaccines, national and international funding agencies urgently need to
institute policies to address this imbalance and provide major new support for
adjuvant basic science and clinical development.
Nikolai Petrovsky is affiliated with
the Department of Endocrinology and Diabetes at Flinders Medical Centre, the
Department of Medicine at Flinders University, the Child Health Research Institute,
and Vaxine Pty Ltd., all in Adelaide, South Australia. Susanne Heinzel is
affiliated with the School of Pharmaceutical, Molecular, and Biomedical
Sciences at the University of South Australia, and with Vaxine Pty. Ltd. Yoshikazu
Honda is with Vaxine Pty. Ltd. A. Bruce Lyons is a
member of the Department of Medicine at Flinders University, the School of
Pharmaceutical, Molecular and Biomedical Sciences at the University of South
Australia, the Department of Medicine at the University of Adelaide, Vaxine
Pty., Ltd., and the Hanson Institute, all located in Adelaide, South Australia.
References
1. Allison, AC, Byars NE. Immunological
adjuvants: desirable properties and side-effects. Mol Immunol 1991
Mar;(3)28:279–284.
2. Waters RV, Terrell TG, Jones GH. Uveitis
induction in the rabbit by muramyl dipeptides. Infect Immun 1986;51:816–825.
3. Gupta RK, Relyveld EH, Lindblad EB, Bizzini
B, Ben-Efraim S, Gupta, CK. Adjuvants—a balance between toxicity and
adjuvanticity. Vaccine 1993;11:293–306.
4. Frey S, Poland G, Percell S, Podda A.
Comparison of the safety, tolerability, and immunogenicity of a MF59-adjuvanted
influenza vaccine and a non-adjuvanted influenza vaccine in non-elderly adults.
Vaccine 2003;21:4234–4237.
5. Smith RE, Donachie AM, Grdic D, Lycke N, Mowat
AM. Immune-stimulating complexes induce an IL-12-dependent cascade of innate
immune responses. J Immunol 1999;162:5536–5546.
6. Ronnberg B, Fekadu M, Morein B. Adjuvant
activity of non-toxic Quillaja saponaria Molina components for use in ISCOM
matrix. Vaccine 1995;13:1375–1382.
7. Garcon N, Heppner DG, Cohen J. Development of
RTS,S/AS02: a purified subunit-based malaria vaccine candidate formulated with
a novel adjuvant. Expert Rev Vaccines 2003;2:231–238.
8. Levie K, Gjorup I, Skinhoj P, Stoffel M. A
2-dose regimen of a recombinant hepatitis B vaccine with the immune stimulant
AS04 compared with the standard 3-dose regimen of Engerix-B in healthy young
adults. Scand J Infect Dis 2002;34:610–614.
9. Goto N, Kato H, Maeyama J, Eto K, Yoshihara
S. Studies on the toxicities of aluminum hydroxide and calcium phosphate as
immunological adjuvants for vaccines. Vaccine 1993;11:914–918.
10. Principi N, Esposito S. Pediatric influenza
prevention and control. Emerg Infect Dis 2004;10:574–580.
11. Edelman R. Vaccine adjuvants. Rev Infect Dis
1980;2:370–383.
12. Gupta RK. Aluminum compounds as vaccine
adjuvants. Adv Drug Deliv Rev 1998;32:155–172.
13. Goto N, Kato H, Maeyama J, Shibano M, Saito
T, Yamaguchi J, Yoshihara S. Local tissue irritating effects and adjuvant
activities of calcium phosphate and aluminium hydroxide with different physical
properties. Vaccine 1997;15:1364–1371.
14. Hall, JG. Studies on the adjuvant action of
beryllium. IV. The preparation of beryllium containing macromolecules that
induce immunoblast responses in vivo. Immunology 1988;64:345–351.
15. Doherty PC, Turner SJ, Webby RG, Thomas PG.
Influenza and the challenge for immunology. Nat Immunol 2006;7:449–455.
16. Butler NR, Voyce MA, Burland WL, Hilton ML.
Advantages of aluminium hydroxide adsorbed combined diphtheria, tetanus, and
pertussis vaccines for the immunization of infants. Br Med J 1969;1:663–666.
17. Straw BE, MacLachlan NJ, Corbett WT, Carter
PB, Schey HM. Comparison of tissue reactions produced by Haemophilus
pleuropneumoniae vaccines made with six different adjuvants in swine. Can J
Comp Med 1985;49:149–151.
18. Audibert FM, Lise LD. Adjuvants: current
status, clinical perspectives and future prospects. Immunol Today
1993;14:281–284.
19. Bomford R. Aluminium salts: perspectives in
their use as adjuvants. In: Gregoriadis GA, Poste AG, editors. Immunological
adjuvants and vaccines. New York: Plenum Press; 1989;p. 35–41
20. Cherin P, Gherardi RK. Macrophagic
myofasciitis. Curr Rheumatol Rep 2000;2:196–200.
21. Gherardi RK, Coquet M, Cherin P, Belec L,
Moretto P, Dreyfus PA, et al. Macrophagic myofasciitis lesions assess long-term
persistence of vaccine-derived aluminium hydroxide in muscle. Brain
2001;124:1821–1831.
22. Cherin P, Gherardi RK. Emergence of a new
entity, the macrophagic myofasciitis. GERMMAD Study Group of the French
Association Against Myopathies. Study and Research Group on Acquired
Dysimmunity-related Muscle Disease. Rev Rhum Engl Ed 1998;65:541–542.
23. Gherardi RK, Authier FJ. Aluminum inclusion
macrophagic myofasciitis: a recently identified condition. Immunol Allergy Clin
North Am 2003;23:699–712.
24. Authier FJ, Cherin P, Creange A, Bonnotte B,
Ferrer X, Abdelmoumni A, et al. Central nervous system disease in patients with
macrophagic myofasciitis. Brain 2001;124:974–983.
25. Verdier F, Burnett R, Michelet-Habchi C,
Moretto P, Fievet-Groyne F, Sauzeat E. Aluminium assay and evaluation of the
local reaction at several time points after intramuscular administration of
aluminium containing vaccines in the Cynomolgus monkey. Vaccine
2005;23:1359–1367.
26. Redhead K, Quinlan GJ, Das RG, Gutteridge
JM. Aluminium-adjuvanted vaccines transiently increase aluminium levels in
murine brain tissue. Pharmacol Toxicol 1992;70:278–280.
27. Hendrick MJ, Goldschmidt MH, Shofer FS, Wang
YY, Somlyo AP. Postvaccinal sarcomas in the cat: epidemiology and electron
probe microanalytical identification of aluminum. Cancer Res 1992;52:5391–5394.
28. Allison AC, Byars NE. Immunologic adjuvants:
general properties, and side-effects. Mol Immunol 1991 Mar;28(3):279–84.
29. Markovic SN, Suman VJ, Ingle JN, Kaur JS,
Pitot HC, Loprinzi CL, et al. Peptide vaccination of patients with metastatic
melanoma: improved clinical outcome in patients demonstrating effective
immunization. Am J Clin Oncol 2006 Aug;29(4):352–60.
30. Aucouturier J, Ganne V, Laval A. Efficacy
and safety of new adjuvants. Ann N Y Acad Sci 2000 916:600–604.
31. Lawrence GW, Saul A, Giddy AJ, Kemp R, Pye
D. Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720.
Vaccine 1997;15:176–178.
32. Gringeri A, Santagostino E, Muca-Perja M,
Mannucci PM, Zagury JF, Bizzini B, et al. Safety and immunogenicity of HIV-1
Tat toxoid in immunocompromised HIV-1-infected patients. J Hum Virol
1998;1:293–298.
33. Genton B, Al-Yaman F, Betuela I, Anders RF,
Saul A, Baea K, et al. Safety and immunogenicity of a three-component
blood-stage malaria vaccine (MSP1, MSP2, RESA) against Plasmodium falciparum in
Papua New Guinean children. Vaccine 2003;22:30–41.
34. Toledo H, Baly A, Castro O, Resik S, Laferte
J, Rolo F, et al. A phase 1 clinical trial of a multi-epitope polypeptide TAB9
combined with Montanide ISA 720 adjuvant in non-HIV-1 infected human
volunteers. Vaccine 2001;19:4328–4336.
35. Ling IT, Ogun SA, Momin P, Richards RL,
Garcon N, Cohen J, et al. Immunization against the murine malaria parasite
Plasmodium yoelii using a recombinant protein with adjuvants developed for
clinical use. Vaccine 1997;15:1562–1567.
36. Stoute JA, Slaoui M, Heppner DG, Momin P,
Kester KE, Desmons P, et al. A preliminary evaluation of a recombinant
circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S
Malaria Vaccine Evaluation Group. N Engl J Med 1997;336:86–91.
37. McCormack S, Tilzey A, Carmichael A, Gotch
F, Kepple J, Newberry JA, et al. A phase 1 trial in HIV negative healthy
volunteers evaluating the effect of potent adjuvants on immunogenicity of a
recombinant gp120W61D derived from dual tropic R5X4 HIV-1ACH320. Vaccine
2000;18:1166–1177.
38. Aucouturier J, Dupuis L, Ganne V. Adjuvants
designed for veterinary and human vaccines. Vaccine 2001;19:2666–2672.
39. Byars NE, Allison AC. Adjuvant formulation
for use in vaccines to elicit both cell-mediated and humoral immunity. Vaccine
1987;5:223–228.
40. Edelman R. Adjuvants for the future. In:
Levine M, Woodrow J, Kaper J, Cobon D, editors. New generation vaccines. New
York: Marcel Dekker Inc. 1997;p. 173–192
41. Ott G, Barchfeld GL, Chernoff D,
Radhakrishnan R, van Hoogevest P, Van Nest G. MF59. Design and evaluation of a
safe and potent adjuvant for human vaccines. Pharm Biotechnol 1995;6:277–296.
42. Akira, S, Uematsu S, Takeuchi O. Pathogen
recognition and innate immunity. Cell 2006 124:783–801.
43. De Donato S, Granoff D, Minutello M, Lecchi
G, Faccini M, Agnello M, et al. Safety and immunogenicity of MF59-adjuvanted
influenza vaccine in the elderly. Vaccine 1999;17:3094–3101.
44. Menegon T, Baldo V, Bonello C, Dalla Costa
D, Di Tommaso A, Trivello R. Influenza vaccines: antibody responses to split
virus and MF59-adjuvanted subunit virus in an adult population. Eur J Epidemiol
1999;15:573–576.
45. Influenza vaccine with squalene adjuvant:
new preparation. No better than available products. Prescrire Int
2004;13:206–208.
46. Traquina P, Morandi M, Contorni M, Van Nest
G. MF59 adjuvant enhances the antibody response to recombinant hepatitis B
surface antigen vaccine in primates. J Infect Dis 1996;174:1168–1175.
47. Wright T, Tong M, Hsu H. Phase 1 study of a
potent adjuvanted hepatitis B vaccine (HBV/MF59) for therapy of chronic hepatitis
B. In: American Association for the Study of Liver Diseases 50th Annual
Meeting; Dallas, Texas 1999; Abstract 1042.
48. Carlson BC, Jansson AM, Larsson A, Bucht A,
Lorentzen JC. The endogenous adjuvant squalene can induce a chronic
T-cell-mediated arthritis in rats. Am J Pathol 2000;156:2057–2065.
49. Freund J. The mode of action of immunologic
adjuvants. Bibl Tuberc 1956;130–148.
50. De Becker G, Moulin V, Pajak B, Bruck C,
Francotte M, Thiriart C, et al. The adjuvant monophosphoryl lipid A increases the
function of antigen-presenting cells. Int Immunol 2000;12:807–815.
51. Gustafson GL, Rhodes MJ. Bacterial cell wall
products as adjuvants: early interferon gamma as a marker for adjuvants that
enhance protective immunity. Res Immunol 1992;143:483–488; discussion 573–484.
52. Ulrich JT, Myers KR. Monophosphoryl lipid A
as an adjuvant. Past experiences and new directions. Pharm Biotechnol
1995;6:495–524.
53. Hartmann G, Weeratna RD, Ballas ZK, Payette
P, Blackwell S, Suparto I, et al. Delineation of a CpG phosphorothioate
oligodeoxynucleotide for activating primate immune responses in vitro and in
vivo. J Immunol 2000;164:1617–1624.
54. Klinman DM, Yi AK, Beaucage SL, Conover J,
Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete
interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA
1996;93:2879–2883.
55. Krug A, Rothenfusser S, Selinger S, Bock C,
Kerkmann M, Battiany J, et al. CpG-A oligonucleotides induce a monocyte-derived
dendritic cell-like phenotype that preferentially activates CD8 T Cells. J
Immunol 2003;170:3468–3477.
56. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato
S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature
2000;408:740–745.
57. Klinman DM, Barnhart KM, Conover J. CpG
motifs as immune adjuvants. Vaccine 1999;17:19–25.
58. Krieg AM, Efler SM, Wittpoth M, Al Adhami
MJ, Davis HL. Induction of systemic TH1-like innate immunity in normal
volunteers following subcutaneous but not intravenous administration of CPG
7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J Immunother
2004;27:460–471.
59. Cooper CL, Davis HL, Morris ML, Efler SM,
Adhami MA, Krieg AM, Cameron DW, Heathcote J. CPG 7909, an immunostimulatory
TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in
healthy adults: a double-blind phase I/II study. J Clin Immunol
2004;24:693–701.
60. Appay V, Jandus C, Voelter V, Reynard S,
Coupland SE, Rimoldi D, et al. New generation vaccine induces effective
melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J
Immunol 2006;177:1670–1678.
61. Durand V, Wong SY, Tough DF, Le Bon A.
Shaping of adaptive immune responses to soluble proteins by TLR agonists: a
role for IFN-alpha/beta. Immunol Cell Biol 2004;82:596–602.
62. Kawai T, Akira S. Toll-like receptor
downstream signaling. Arthritis Res Ther 2005;7:12–19.
63. Takeda K, Akira S. Toll-like receptors in
innate immunity. Int Immunol 2005;17:1–14.
64. Prinz M, Garbe F, Schmidt H, Mildner A,
Gutcher I, Wolter K, et al. Innate immunity mediated by TLR9 modulates
pathogenicity in an animal model of multiple sclerosis. J Clin Invest
2006;116:456–464.
65. Ichikawa HT, Williams LP, Segal BM.
Activation of APCs through CD40 or Toll-like receptor 9 overcomes tolerance and
precipitates autoimmune disease. J Immunol 2002;169:2781–2787.
66. Anders HJ, Vielhauer V, Eis V, Linde Y,
Kretzler M, Perez de Lema G, et al. Activation of toll-like receptor-9 induces
progression of renal disease in MRL-Fas(lpr) mice. Faseb J 2004;18:534–536.
67. Pawar RD, Patole PS, Ellwart A, Lech M,
Segerer S, Schlondorff D, Anders HJ. Ligands to nucleic acid-specific toll-like
receptors and the onset of lupus nephritis. J Am Soc Nephrol 2006;17:3365–3373.
68. Kensil CR. Saponins as vaccine adjuvants.
Crit Rev Ther Drug Carrier Syst 1996;13:1–55.
69. Kensil CR, Patel U, Lennick M, Marciani D.
Separation and characterization of saponins with adjuvant activity from
Quillaja saponaria Molina cortex. J Immunol 1991;146:431–437.
70. Wu JY, Gardner BH, Murphy CI, Seals JR,
Kensil CR, Recchia J, et al. Saponin adjuvant enhancement of antigen-specific
immune responses to an experimental HIV-1 vaccine. J Immunol
1992;148:1519–1525.
71. Bangham AD, Horne RW, Glauert AM, Dingle JT,
Lucy JA. Action of saponin on biological cell membranes. Nature
1962;196:952–955.
72. Kensil CR, Kammer R. QS-21: a water-soluble
triterpene glycoside adjuvant. Expert Opin Investig Drugs 1998;7:1475–1482.
73. Kensil CR, Wu Jy, Soltisyk S. Structural and
immunological characterization of the vaccine adjuvant QS-21. In Vaccine
design: the subunit and adjuvant approach. Powell NM, editor. New York: Plenum
Press; 1995;p. 525–541
74. Rook GA. New meanings for an old word:
adjuvanticity, cytokines and T cells. Immunol Today 1993;14:95–96.
75. Mbawuike I, Zang Y, Couch RB. Humoral and
cell-mediated immune responses of humans to inactivated influenza vaccine with
or without QS21 adjuvant. Vaccine 2007;25:3263–3269.
76. Livingston PO, Adluri S, Helling F, Yao TJ,
Kensil CR, Newman MJ, Marciani D. Phase 1 trial of immunological adjuvant QS-21
with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients
with malignant melanoma. Vaccine 1994;12:1275–1280.
77. Chapman PB, Morrissey DM, Panageas KS,
Hamilton WB, Zhan C, et al. Induction of antibodies against GM2 ganglioside by
immunizing melanoma patients using GM2-keyhole limpet hemocyanin + QS21
vaccine: a dose-response study. Clin Cancer Res;2000 6:874–879.
78. Kashala O, Amador R, Valero MV, Moreno A,
Barbosa A, Nickel B, et al. Safety, tolerability and immunogenicity of new
formulations of the Plasmodium falciparum malaria peptide vaccine SPf66
combined with the immunological adjuvant QS-21. Vaccine 2002;20:2263–2277.
79. Ghochikyan A, Mkrtichyan M, Petrushina I,
Movsesyan N, Karapetyan A, Cribbs DH, Agadjanyan MG. Prototype Alzheimer's
disease epitope vaccine induced strong Th2-type anti-Abeta antibody response
with Alum to Quil A adjuvant switch. Vaccine 2006;24:2275–2282.
80. Rimmelzwaan GF, Baars M, van Beek R, van
Amerongen G, Lovgren-Bengtsson K, Claas EC, Osterhaus AD. Induction of
protective immunity against influenza virus in a macaque model: comparison of
conventional and iscom vaccines. J Gen Virol 1997;78 ( Pt 4):757–765.
81. Takahashi H, Takeshita T, Morein B, Putney
S, Germain RN, Berzofsky JA. Induction of CD8+ cytotoxic T cells by
immunization with purified HIV-1 envelope protein in ISCOMs. Nature
1990;344:873–875.
82. Cox JC, Sjolander A, Barr IG. ISCOMs and
other saponin based adjuvants. Adv Drug Deliv Rev 1998;32:247–271.
83. Soltysik S, Wu JY, Recchia J, Wheeler DA,
Newman MJ, Coughlin RT, Kensil CR. Structure/function studies of QS-21
adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in
adjuvant function. Vaccine;1995 13:1403–1410.
84. Morein B, Villacres-Eriksson M,
Lovgren-Bengtsson K. Iscom, a delivery system for parenteral and mucosal
vaccination. Dev Biol Stand 1998;92:33–39.
85. Claassen I, Osterhaus A. The iscom structure
as an immune-enhancing moiety: experience with viral systems. Res Immunol 1992;143:531–541.
86. Davis ID, Chen W, Jackson, H, Parente P,
Shackleton M, Hopkins W, et al. Recombinant NY-ESO-1 protein with ISCOMATRIX
adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell
responses in humans. Proc Natl Acad Sci USA 2004;101:10697–10702.
87. Allison AG, Gregoriadis G. Liposomes as
immunological adjuvants. Nature 1974;252:252.
88. Heath TD, Edwards DC, Ryman BE. The adjuvant
properties of liposomes. Biochem Soc Trans 1976;4:129–133.
89. Tyrrell DA, Heath TD, Colley CM, Ryman BE.
New aspects of liposomes. Biochim Biophys Acta 1976;457:259–302.
90. van Rooijen N, van Nieuwmegen R. Use of
liposomes as biodegradable and harmless adjuvants. Methods Enzymol
1983;93:83–95.
91. Eldridge JH, Staas JK, Meulbroek JA, McGhee
JR, Tice TR, Gilley RM. Biodegradable microspheres as a vaccine delivery
system. Mol Immunol 1991;28:287–294.
92. Kramp WJ, Six HR, Kasel JA. Postimmunization
clearance of liposome entrapped adenovirus type 5 hexon. Proc Soc Exp Biol Med
1982;169:135–139.
93. Ambrosch F, Wiedermann G, Jonas S, Althaus
B, Finkel B, Gluck R, Herzog C. Immunogenicity and protectivity of a new
liposomal hepatitis A vaccine. Vaccine 1997;15:1209–1213.
94. Powers DC, Manning MC, Hanscome PJ,
Pietrobon PJ. Cytotoxic T lymphocyte responses to a liposome-adjuvanted
influenza A virus vaccine in the elderly. J Infect Dis 1995;172:1103–1107.
95. Ben-Yehuda A, Joseph A, Zeira E, Even-Chen
S, Louria-Hayon I, Babai I, et al. Immunogenicity and safety of a novel
liposomal influenza subunit vaccine (INFLUSOME-VAC) in young adults. J Med
Virol 2003;69:560–567.
96. Owais M, Gupta CM. Liposome-mediated
cytosolic delivery of macromolecules and its possible use in vaccine
development. Eur J Biochem 2000;267:3946–3956.
97. Zheng L, Huang XL, Fan Z, Borowski L, Wilson
CC, Rinaldo, Jr. CR. Delivery of liposome-encapsulated HIV type 1 proteins to
human dendritic cells for stimulation of HIV type 1-specific memory cytotoxic T
lymphocyte responses. AIDS Res Hum Retroviruses 1999;15:1011–1020.
98. Guy B, Pascal N, Francon A, Bonnin A,
Gimenez S, Lafay-Vialon E, Trannoy E, Haensler J. Design, characterization and
preclinical efficacy of a cationic lipid adjuvant for influenza split vaccine.
Vaccine 2001;19:1794–1805.
99. Zayas C, Bracho G, Lastre M, Gonzalez D, Gil
D, Acevedo R, del Campo J, Taboada C, et al. Scale up of proteoliposome derived
Cochleate production. Vaccine 2006;24 Suppl 2:S2–94–95.
100. Cooper PD. Vaccine adjuvants based on gamma
inulin. In Vaccine design: the subunit and adjuvant approach. Powell MF (ed.),
Plenum Press, New York 1995;559–580.
101. Petrovsky N. Novel human polysaccharide
adjuvants with dual Th1 and Th2 potentiating activity. Vaccine 2006;24 Suppl
2:S2–26–29.
102. Petrovsky N, Aguilar JC. Vaccine adjuvants:
current state and future trends. Immunol Cell Biol 2004;82:488–496.
103. Silva DG, Cooper PD, Petrovsky N.
Inulin-derived adjuvants efficiently promote both Th1 and Th2 immune responses.
Immunol Cell Biol 2004;82:611–616.
104. Kornbluth RS, Stone GW. Immunostimulatory
combinations: designing the next generation of vaccine adjuvants. J Leukoc Biol
2006;80:1084–1102.
105. Rezaei N. Therapeutic targeting of
pattern-recognition receptors. Int Immunopharmacol 2006;6:863–869.
106. Su,B, Silver PB, Grajewski RS, Agarwal RK,
Tang J, Chan CC, Caspi RR. Essential role of the MyD88 pathway, but
nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting
Th1-mediated autoimmunity. J Immunol 2005;175:6303–6310.
107. van Duin D, Medzhitov R, Shaw AC.
Triggering TLR signaling in vaccination. Trends Immunol 2006;27:49–55.
108. O'Hagan DT, Rappuoli R. Novel approaches to
vaccine delivery. Pharm Res 2004;21:1519–1530.
109. Singh M, and O'Hagan DT. Recent advances in
vaccine adjuvants. Pharm Res 2002;19:715–728.
110. Singh M, Ugozzoli M, Kazzaz J, Chesko J,
Soenawan E, Mannucci D, et al. A preliminary evaluation of alternative
adjuvants to alum using a range of established and new generation vaccine
antigens. Vaccine 2006;24:1680–1686.
111. Cooper PD, McComb C, Steele EJ. The
adjuvanticity of Algammulin, a new vaccine adjuvant. Vaccine 1991;9:408–415.
112. Cooper PD, Steele EJ. Algammulin, a new
vaccine adjuvant comprising gamma inulin particles containing alum: preparation
and in vitro properties. Vaccine 1991;9:351–357.
113. Cooper PD, Steele EJ. The adjuvanticity of
gamma inulin. Immunol Cell Biol 1988 66;( Pt 5–6):345–352.
114. Frazer I, Tindle R, Fernando G, Malcolm K,
Herd K, McFadyn S, et al. Safety and immunogenicity of HPV16 E7/Algammulin. In
T. RW, editor Vaccines for Human Papillomavirus Infection and Anogenital
Disease. New York: RG Landes 1999;p. 91–104
115. Brewer JM. (How) do aluminium adjuvants
work? Immunol Lett 2006;102:10–15.
116. Goldenthal KL, Cavagnaro JA, Alving CR,
Vogel FR. Safety evaluation of vaccine adjuvants. National Cooperative Vaccine
Development Working Group. AIDS Res Hum Retroviruses 1993;9:S45–S49.
117. Hunter RL. Overview of vaccine adjuvants:
present and future. Vaccine 2002;20 Suppl 3:S7–12.
118. Lindblad EB. Aluminium adjuvants—in
retrospect and prospect. Vaccine 2004 22:3658–3668.
119. Moingeon P, Haensler J, Lindberg A. Towards
the rational design of Th1 adjuvants. Vaccine 2001;19:4363–4372.
120. Pashine A, Valiante NM, Ulmer JB. Targeting
the innate immune response with improved vaccine adjuvants. Nat Med
2005;11:S63–68.
121. Pink JR, Kieny MP. 4th meeting on novel
adjuvants currently in/close to human clinical testing world health
organization — organisation Mondiale de la Sante Fondation Merieux, Annecy,
France, 23–25, June 2003. Vaccine 2004;22:2097–2102.
122. Seya T, Akazawa T, Tsujita T, Matsumoto M.
Role of Toll-like receptors in adjuvant-augmented immune therapies. Evid Based
Complement Alternat Med 2006;3:31–38; discussion 133–137.
123. Stills Jr., HF. Adjuvants and antibody
production: dispelling the myths associated with Freund's complete and other
adjuvants. Ilar J 2005;46:280–293.
124. Tomai MA, Johnson AG. T cell and
interferon-gamma involvement in the adjuvant action of a detoxified endotoxin.
J Biol Response Mod 1989;8:625–643.
125. Vogel, FP, MF. A summary compendium of
vaccine adjuvants and excipients. In: N.M. Powell MF, editor. Vaccine design:
the subunit and adjuvant approach. New York: Plenum Publishing Corporation;
1995;p. 234–250
126. Vogel FR. Adjuvants in perspective. In:
Brown, FH, editor. Modulation of the immune response to vaccine antigens.
Karger; 1998.
127. Warren HSC. Future prospects for vaccine
adjuvants. Crit Rev Immunol 1986;4:369–388.
Post a Comment